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ABSTRACT 

Lane line detection is a critical technology for 

autonomous driving, allowing vehicles to 

accurately locate lane markings and road 

boundaries. This paper reviews recent advances in 

using deep learning for robust and real-time lane 

line detection. We summarize key deep learning 

techniques, including convolutional neural 

networks (CNNs), recurrent neural networks 

(RNNs), and adversarial networks, that have led to 

state-of-the-art results on lane detection 

benchmarks. Preprocessing, neural network 

architecture design choices, and postprocessing 

methods are analyzed. Challenges due to road 

conditions, weather, occlusion, and fading lane 

markings are discussed along with ideas for 

improving robustness. Additional topics include the 

major public benchmark datasets for performance 

evaluation, current leading approaches, and metrics 

like accuracy and inference speed. Finally, open 

issues to be addressed and promising directions for 

future research are presented, along with the 

potential for lane line detection systems to enable 

advanced self-driving vehicle functionality. 

Keywords: Lane detection, deep learning, 

computer vision, convolutional neural networks, 

recurrent neural networks, generative adversarial 

networks, autonomous vehicles, self-driving cars 

 

I. INTRODUCTION 
Accurately detecting lane lines is an 

essential capability for autonomous vehicles to 

navigate roads safely and effectively. As self-

driving technology continues rapid advancement 

towards real-world deployment, developing robust 

lane line detection systems is a high priority 

research area. Lane lines provide critical road 

geometry clues and constraints that can aid path 

planning, lane keeping, lane changing, turn 

predictions, and mapping/localization - all key 

functionality expected from self-driving stacks [1]-

[3]. Humans use lane lines as visual anchors to 

steer and maneuver vehicles properly. Similarly, 

for an automated vehicle to drive reliably, 

algorithms must precisely estimate lane boundaries 

from surround-view cameras and interpret the 

semantics. However, this is non-trivial due to 

diverse road types, varied lighting conditions, 

weather changes, faded paint, occlusions from 

vehicles, and more. Deep learning techniques based 

on neural networks have recently emerged as a 

promising approach to handle these challenges. 

Lane line detection has been an active 

focus area for over three decades across academia 

and industry, with early work relying on classical 

image processing and hand-engineered computer 

vision pipelines. In 1987, one of the first examples 

was published on extracting lane structure from 

road images using edge filters, transform maps, and 

spline fitting [4]. Through the 1990s and 2000s, 

research focused on improving classical lane line 

algorithms using filtering, segmentation, clustering, 

tracking, and optimal estimation methods [5]-[8]. 

These approaches depended heavily on threshold 

parameters, constraints, and feature crafting 

expertise. Fragility to noise and generalization 

challenges limited deployability. With the advent 

of deep learning and CNN architectures in the late 

2000s, automated feature learning offered new 

potential. 

Deep neural networks provide several advantages 

that are highly suited for the lane line detection 

task: 

1. Multi-scale feature learning: CNN encoders 

inherently develop hierarchical 

representations, capturing low-level edges 

alongside high-level contextual cues useful for 

this structured prediction problem [9]-[11]. 

2. End-to-end training: The entire processing 

pipeline can be optimized jointly, 

outperforming segmented classical frameworks 

reliant on hand-designed components [12]. 

3. High representational capacity: Deep networks 

have sufficient parameters to learn very 

complex mappings between input images and 

lane line outputs [13]-[14]. 

4. Improved generalization: With abundant 

annotated training data, deep networks can 
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better interpolate across varied driving 

scenarios compared to manually coded logics 

[15]-[16]. 

5. Graphics hardware acceleration: Highly 

parallelizable compute maps well to efficient 

GPU implementations necessary for real-time 

automotive operation [17]. 

With these advantages, deep neural 

networks have rapidly become the de facto 

approach for lane line detection systems. Next we 

chronicle the progression of lane detection 

networks as deeper architectures, novel objective 

functions, and augmented training data continued 

improving performance. 

Early applications of neural networks 

include work by Huval et al. demonstrating a CNN-

RNN pipeline in 2015 for lane marking and road 

boundary detection [18]. The convolutional layers 

efficiently learned features from dash cam images 

while the recurrent layers exploited the temporal 

correlations across video frames. In 2016, Lee et al. 

developed one of the first dedicated end-to-end 

lane detection CNNs, using linear layer regression 

to output polyline lane predictions in an IPM 

(inverse perspective mapping) view [19]. The IPM 

representation has since become commonly 

adopted as it simplifies output space compared to 

image coordinates. 

Significant performance jumped were 

unlocked in 2017-2018 by exploiting existing 

classification architectures (VGG, ResNet) proven 

on ImageNet and fine-tuning them for lane specific 

traits [20]-[22]. The pretrained weights serve as a 

strong initialization for lower level features. 

Building on this, Pan et al. introduced spatial CNN 

(SCNN) in 2018 which saw further gains by 

applying bilinear interpolation within the decoder 

to better recover spatial details lost during encoding 

[23]. SCNN established new records on the 

Tusimple dataset, demonstrating the importance of 

tailored architectural choices for this application. 

Ensuing years witnessed numerous 

extensions to boost accuracy and speed by 

manipulating objective losses [24], adding self-

attention [25], applying multi-task learning [26], 

incorporating propagation across time [27], fusing 

sensor inputs [28], and pushing model 

parallelism/compression for embedded deployment 

[29]-[30]. Adversarial data augmentation has also 

helped improve corner case robustness [31]. We 

detail more algorithmic developments in the next 

section. 

On the datasets front, labeled benchmarks 

grew considerably through collaborative efforts 

like Tusimple, ApolloScape, LLAMAS, AGH, etc. 

which exposed models to diverse geo-spaces 

beyond highway scenarios [32]-[36]. Leaderboards 

on these public testbeds track performance over 

time, catalyzing innovations. The top performing 

lane detection networks now approach human-level 

proficiency. However, open challenges remain in 

extreme conditions (poor illumination, occlusion, 

weather based distortion) along with meeting 

speed, memory, and reliability metrics. The 

subsequent sections study promising directions 

being pursued. 

In summary, lane line detection has rapidly 

advanced from early hand-crafted algorithms to 

flexible deep network centric solutions leveraging 

advancements in supervised learning. Accuracy on 

benchmarks has seen remarkable progress to 

surpass 95% precision. As datasets expand to 

capture statistical diversity, deep neural networks 

possess the tools to continue gaining robustness. 

The integration of these perception modules into 

self-driving vehicle stacks could profoundly 

transform road safety and mobility experiences 

over the next decade. The incremental innovations 

driven by deep learning research will help unlock 

this future. 

 

II. MAJOR DEEP LEARNING 

APPROACHES FOR LANE LINE 

DETECTION 
Before the advent of deep learning, 

traditional computer vision techniques were 

commonly used for algorithmic lane line detection. 

Classical methods rely on a pipeline of hand-

engineered stages including preprocessing, feature 

crafting, segmentation, fitting, tracking, and 

postprocessing [37]-[39]. Each component requires 

extensive optimization of hyperparameters and 

thresholds to balance robustness and precision. 

Fusing outputs across the pipeline stages poses 

difficulties as errors propagate. The overall 

brittleness and complexity limits real-world 

viability. 

In contrast, deep neural networks provide 

an end-to-end learning framework without complex 

tuning of individual blocks. The layered 

architectural abstractions automatically derive 

representations needed to map raw input pixels to 

lane line predictions. Three major deep learning 

approaches have emerged: CNNs, RNNs, and 

GANs. 

 

Convolutional Neural Networks 

CNNs are the most prevalent deep 

learning technique applied for lane line detection, 

using stacked convolutional layers for hierarchical 

feature extraction [40]-[44]. Lower layers activate 

on basic edges and corners, while higher layers 
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develop semantic interpretations of lane marker 

classes informed by global context. Fully 

connected layers subsequently transform these 

features into structured geometric representations 

of the lane boundaries, often encoded as anchor 

points or polynomial curves in an IPM view. 

Regression based output layers directly 

predict lane coordinate offsets, while classification 

networks segment pixelwise likelihoods then fit 

curves post hoc. The deep encoder-decoder pattern 

makes CNNs highly accurate at this spatial 

processing task. Careful architecture tuning is 

necessary however for real-time performance given 

high compute requirements. Slimmer models 

leverage distillation, quantization, and other 

compression tactics. 

 
Figure 1. The architecture of CNN based lane marking detection technique. 

 

Recurrent Neural Networks 

RNN architectures like LSTMs and GRUs 

provide complementary modeling capabilities to 

CNNs for lane detection. They intrinsically 

maintain hidden state representations across video 

frame sequences, naturally exploiting the strong 

temporal correlations in lane line positions [45]-

[49]. This aids reliable tracking and smoothing of 

outputs over time. RNN layers can wrap around 

deep CNN encoders to further bolster context 

modeling. Series connections passing LSTM 

outputs of prior frames into subsequent inputs 

capture useful motion dynamics. Alternately, 

parallel RNN branches aggregate learnings. 

Combined CNN-RNN schemas better handle 

corner cases like occlusion. However, tuning 

stability with sequence length and state size 

hyperparams raises model complexity. 

 
Figure 2. Schematic diagram of VPGNet. 

 

Generative Adversarial Networks 

Recent exploration of GANs for lane 

detection augments training by synthetically 

generating diverse marked road images through an 

adversarial process [50]-[54]. The generator tries 

fooling the discriminator which classifies real vs. 

fake examples. This provides additional photo-

realistic data complementing standard dash cam 

captures. Networks trained on GAN augmented 

data empirically generalize better. Style transfer 

concepts can also migrate ground truth markup 

onto new road images. Further applications of 

GANs include refining the output probability 

distribution to match ground truth for improved 

regression. This distributional matching loss 

sharpens classifier contour accuracy. 
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In summary, deep CNNs, RNNs, and 

GANs have become integral to top performing lane 

line detection networks. Combining 

complementary strengths has pushed accuracy 

beyond 95% on benchmarks while steadily 

reducing runtime latency. Continued research on 

neural architectural innovations will help overcome 

edge case deficiencies by enhanced representation 

learning. 

 

III. KEY TECHNICAL ASPECTS 
Designing accurate and robust lane 

detection networks involves optimizing 

preprocessing, neural architectural choices, loss 

formulations, and postprocessing components. We 

discuss key considerations around these areas. 

Additional tuning is necessitated by various 

environmental challenges. 

 

Preprocessing 

Multiple preprocessing steps help 

normalize sensor images before feeding into the 

neural pipeline [55]-[57]. Common augmentations 

add noise, blur, hue/saturation changes to expand 

appearance diversity. Vertical flip, crop, scale, 

translate, and warp variations mimic side cameras 

under orientation shifts. The raw view perspective 

gets transformed into a segmented BEV projection 

centered on road lanes using IPM. Color space 

conversions highlight painted markers contrasted 

against the pavement. Finally contrast 

normalization and spatial downsampling streamline 

upstream data volumes. 

Neural Network Architectures 

 

CNN Layers and Setup 

Foundation CNN encoders are either 

initialized randomly or transfer learned from large 

ImageNet models like VGG, ResNet, DenseNetetc 

[57]-[60]. Stacking 3-5 convolutional blocks with 

small 3x3 kernels, batch normalization, and non-

linearities extract multi-scale representations. 

Encoders reduce height/width dimensions while 

expanding feature channels through depth. 

Symmetric decoders then resample to input 

resolution via transpose convolution, upsampling 

etc. Dilated convolutions enlarge receptive fields 

without losing resolution or weight count. Variants 

like DenseNets improve information flow across 

layers through additive connections while RNN 

assisted networks model temporal semantics [61]-

[62]. 

 

Encoders and Decoders 

Distinct encoder-decoder patterns emerge 

based on lane detection outputs. Segmentation 

masks predicting dense per pixel likelihoods use 

symmetrical hourglass like U-Nets with skip links 

copying encoder activations into corresponding 

decoder stages [63]-[64]. This shuttles spatial 

details otherwise discarded during progressive 

pooling. Regression networks forecasting sparse 

lane coordinates employ asymmetrical designs with 

deeper encoders and shallower decoders [65]-[66]. 

Compact tail ends suffice to ultimately output 

curve parameters or anchor point offsets. YOLO 

style single-shot detectors avoid decoding 

altogether by dense predictions directly on top of 

base encoders [67]. 

 
Figure 3. Schematic diagram of DeepLane. 

 

Loss Functions 

Match type loss functions supervise 

network learning. L2 regression loss penalizes 

deviation between predicted and ground truth lane 

coordinates. Cross-entropy classifiers learn from 

per-pixel binary markings. Probabilistic log losses 

scored along output polygons assess fit. Task 

weighting balances joint lane, edge, attribute 

detection. Static losses assume IID data. Online 

hard negative mining adapts to misprediction 

difficulties by emphasizing badly fit instances. 

Curriculum schedules order samples by difficulty. 
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Consistency regularization adds noise injections 

and enforces invariance - improving generalization. 

Combinations of losses tailor to multi-task LeNet, 

SegNet, R-CNN type architectures [68]-[70]. 

 
Figure 4. Schematic diagram of Lanenet. 

 

Postprocessing 

Raw network outputs undergo 

postprocessing to smooth errors. Temporal sliding 

window filtering averages consecutive frame 

forecasts. Predictions get aggregated through 

ensembles of multiple networks. Clustering 

assembles disjoint segments based on spatial 

connectivity assumptions. Kalman filters [71] 

exploit motion dynamics to stabilize trajectories. 

Polynomial curve fitting interpolates sparse 

markings into Continuous splines. Resulting 

outputs then undergo model selection testing 

conformity to lane configuration priors. These 

refinement tactics help address residual 

inconsistencies. 

Challenges 

Numerous corner case environmental factors 

remain open research issues to expand the envelope 

of robust operations [72]: 

● Inclement weather like rain, snow, fog 

dynamically alters lighting and surface 

imagery. 

● Construction zones and accidents cause 

unpredictable occlusions blocking lane views. 

● Worn road markings from insufficient paint or 

material degradation visually fade over time. 

● Nighttime driving with non-uniform 

illumination and glaring oncoming headlights 

scatter signals. 

● Rural roads have higher curvature, more severe 

elevation changes, and lack structured 

markings. 

 

Addressing these challenges mandates 

augmented training data covering statistical 

diversity of imaging and layouts. But collecting 

adequate volumes poses difficulties. So algorithmic 

approaches being explored include style transfer to 

add synthetic variability [73], attention modules to 

handle clutter [74], and meta-learning to quickly 

adapt to new geographies.[75] Simulations also 

help efficiently generate new environments for data 

hungry models [76]. 

In summary, intensive research continues 

on optimizing deep network components for lane 

detection from data ingest to output actuators. 

Handling corner environmental cases remains the 

key opportunity to enable safe self driving vehicle 

deployments. 

 

IV. EVALUATION AND BENCHMARKS 
Standardized datasets and performance 

metrics enable robust comparison of algorithm 

accuracy and speed. We summarize key 

benchmarks guiding research progress. 

 

Datasets 

A number of public lane marking datasets 

have emerged with diversity across locations, 

environments, and annotations [77]-[82]. Tusimple 

contains over 36K images from Chinese highways 

with pixel level semantic labels distinguishing 

categories like normal, crowded, dashed, arrow, 

and obsolete lanes. CULane has 133K frames 

spanning structured and unstructured roads labeled 

with dense contours. Caltech Lanes offers 1224 

sparsely annotated highway scenes filmed in Los 

Angeles for testing generalization. Other niche sets 

like LLAMAS (low latitude), AGH (curvy lanes), 

Brain4Cars (poor weather), VaMoR (variety) help 

evaluate specialized conditions. The scale, detail, 

and variability across these benchmarks measure 

model capabilities on long tail test cases beyond 

high frequency highway driving. 
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Evaluation Metrics 

Standard metrics quantitatively assess 

model accuracy and efficiency. Mean F1 score 

computes segmentation prediction quality by 

balancing recall and precision. Cross track error 

measures lateral vehicle displacement indicating 

precision lane centering ability. Splits by scene 

complexity like shadows, turns, night reflect 

robustness. Inference speed in FPS evaluates 

computational performance for real-time needs. 

Memory footprint and model size metrics highlight 

compressibility for embedded deployment. Further 

drilling analyzes failure modes and confusion 

matrices to identify subsystem weaknesses. The 

key is standardized apples-to-apples measurement 

given variance in code bases, hardware, and 

implementations. 

 

 
Figure 5. Sample image frames of the Tusimple dataset. 

 

SOTA Results 

The Tusimple benchmark leaderboard 

reports aggregate test performance with top 

solutions approaching 96% F1 score [83]-[85]. This 

suggests near human parity on the highway 

domain. State-of-the-art networks leverage multi-

task dense prediction transformers [86], curriculum 

model expansion [87], and semi-supervised domain 

adaptation techniques [88]. However, more 

challenging testbeds like BDD100K only see 80% 

accuracy indicating research headroom on corner 

cases [89]-[90]. Continued dataset development 

reflecting long tail scenarios combined with 

improved evaluation will catalyze innovations. 
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Figure 6. Predicted lane marking using DNN (a) Input (b) Lanenet (c) SCNN (d) CNN-LSTM (e) 

ERFNet-DLSF and (f) El-GAN. 

 

In summary, public benchmarks guide 

progress by reporting quantitative metrics on model 

accuracy and speed. But coverage limitations imply 

caution is needed when claiming robustness for 

safety critical self driving deployments. Broadly 

distributed testing humility helps ensure user trust 

and adoption. 

 

V. CONCLUSION 
Robust and accurate lane line detection is 

an integral capability for safe self-driving vehicle 

deployment. This paper has reviewed the rapid 

progress in leveraging deep learning techniques 

like convolutional neural networks, recurrent 

networks, and adversarial training to approach 

human-level performance on highway lane marking 

datasets. 

Key points covered include: 

1. Deep learning methods now clearly outperform 

classical computer vision pipelines relying on 

manually engineered processing steps. End-to-

end trained models better capture 

environmental diversity. 

2. Careful neural architecture design including 

encoder-decoder patterns, multitask loss 

formulations, and postprocessing drives state-

of-the-art outcomes. Complementary CNN, 

RNN, and GAN combinations provide 

strengths missing in individual approaches. 

3. Public benchmarks have accelerated progress 

by providing diverse labeled data and 

standardized accuracy measurement of 

algorithms. However, gaps exist in 

representing long tail scenarios. 

4. The primary opportunity remains enhancing 

robustness across weather, illumination, 

occlusion, and wear based challenges. 

Augmented datasets, simulation, and 

algorithmic innovations focused on corner 

cases will bridge the last mile. 

 

With lane line perception maturing, the 

path is clear to integrate these deep neural detectors 

into full self-driving stacks. High precision vehicle 

state estimation enabled by lane graphs serves as an 

indispensable base layer for navigation, planning, 

prediction, and control tasks. Upstream impact will 

also flow down to advanced driver assistance 

systems in production vehicles over the next 

decade. Already, Level 2/3 automation heavily 

relies on lane centering and changing. 
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As datasets grow to capture worldwide 

diversity, deep learning solutions will continue 

steadily improving. Handling gritty environmental 

edge cases remains the final frontier blocking 

commercial autonomous driving deployment at 

scale across contexts. Gradually capturing 

statistical variability in training data and models to 

match human adaptability will help unlock the 

transformational safety and mobility potential of 

self-driving technology. 
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